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ABSTRACT 

It is proved that the self-similar solution of the nonlinear equation of filtration 
gives the asymptotic representation of the solution of the Cauchy problem 
for the same equation. 

Consider  the Cauchy problem for  the heat equation 

~?u ~32u 

c3t - ~x 2 

when the initial data are of  compact  support.  I t  is a known result that  the solution 

o f  this problem behaves asymptotical ly as a fundamental  solution o f  the same 

equation as t ~ ~ .  (This can be proved easily by means o f  the Poisson integral 

formula.)  We propose  to prove here the same result for the solution o f  the Cauchy 

problem for the equation o f  unsteady filtration 

Ou 02u ~+1 
(1) ~?t - ~3x ~ (2 > 0) t 

Equat ion (1) is invariant under  the following group of  t ransformat ions:  

(2) u '  = cu, x '  = l - i x ,  t' = l -2c-~t .  

This impor tant  observation enables us to find a self-similar solution we(x, t) of  (1) 

that  satisfies the initial condit ion 

wE(x, 0) = E~(x) *t 

t The asymptotic behaviour of the solution of this problem was considered in the paper of 
Barenblatt and Zeldovich [4]. In this paper, several terms of the asymptotic representation of 
the solution for large time were stated without proof. 

tt ~ (x) denotes the Dirac measure. 
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with an arbitrary constant E. Such a solution is of the form 

(3) 

where 

wE(x, t) : E2/(x+ 2)t-1/(I+ 2)OP(xE-X(t+ 2)t - U(~'+ 2)) 

77 

{~ (2)(~o 2 - 42) 1/x if ~ < 4o 

(4) q~(~) = if 4 > 4o 

and 4o = 4o(~), cf. [10]. 

The proof of the theorem given below is also based on the existence of  a group 

of transformations of type (2). 

We consider the Cauchy problem for Eq. (1) in the half-plane 

S =  {(x,t): x e R  l, 0__<t<oo} 

with the initial condition 

(5)  u 1, =o = . o (X) ,  

where Uo(X) is a continuous non-negative function with compact support. Assume, 

for simplicity, that the function [Uo(X)] x+l satisfies the Lipshitz condition. 

DEFINITION. A function u(x, t) defined and bounded in S is called a generalized 

solution of the Cauchy problem (1), (5) in S if it satisfies the following conditions: 

(i) u(x, t) is continuous and non-negative. 

(ii) there exists a generalized bounded derivative (bu a+ ~)/(Ox). 

(iii) for any continuously differentiable function f ( x ,  t) with compact support 

f fs ( o: 2) f l (6) u c?t c3x dxdt  + Uo(x)f(x,O)dx = O. 

The existence and uniqueness of the generalized solution of the problem (1), 

(5) was proved in the paper of Oleinik, Kalasnikov, and Czou, Yui-Lin [7]. See 

also Aronson [1,2, 3]. 

As was shown in [7], the generalized solution u(x, t) of the problem (1), (5) is 

a generalized solution of the Cauchy problem in any half-plane (x e R ~, 0 =< to 

=< t < oo) with the initial condition 

U It =to = U(X, to). 

It was also proved in [7] that [u(x, t)] x+~ is a Lipshitz function with respect to x. 

It is easy to verify that the self-similar solution (3) is a generalized solution of a 

corresponding Cauchy problem in any half-plane (x ~ R ~, 0 < to =< t < oo). 
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The aim of this paper is to prove the following theorem. 

THEOREM. 

(5) and 

Let u(x, t) be a generalized solution of  the Cauchy problem (1) 

tl/(a+2) I u(x, t) - WEo(X, t) I --, o as t ~ oo 

uniformly with respect to x e R  ~. 

We start with the following lemma. 

LEMMA 1. Let u(x,t) be a generalized solution of the Cauehy problem (1), 

(5). Then there exists a constant E~ such that 

(8) u(x, t) < we,(x, t + 1) in S. 

PROOF. We first prove (8) for t = 0, i.e. that 

(9) Uo(X) <= wE,(x, 1) = E2/(x+ 2)qS(xE1 a/(a+ 2)) 

or sufficiently large Et. 

Let b be a constant such that Uo(X ) = 0 for Ix I > b. It follows from (4) that 

~b(r is positive for r < 4o and that it increases monotonically when [ ~] decreases. 

Therefore we(x, 1) > 0 for Ixl < b provided that be  -a/(a+2) < 4o and by choosing 

E sufficiently large, the function we(x, 1) will become larger than u 0(x). Thus (9) 

is proved. 

Now, using the monotonic dependence of the generalized solution of  the 

Cauchy problem on the initial data proved in [7], we obtain (8). 

Set Uk(X,t)= ku(kx, ka+20, (k > 0). Now Uk(X,t) is a generalized solution of 

Eq. (1) for the initial data Uk(X,O)= kuo(kx). 
Since Uk(X, O) --* Eo6(X) as k ~ 0% it is reasonable to expect that Uk(X, t) -* 

WEo(X, t) as k ~ o0. To show that this is indeed the case, we consider the functions 

Uk(X, t) in the strip (x e R I, 0 < t < T) where T is an arbitrary fixed constant. 

From (8), we get ku(kx, ka+2t) < kwr,(kx, ka+2t + 1). Hence 

(10) uk(x, t) < wE,(x, t + k-(~+2)). 

Let ~ e (0, T/2). It follows from (10) that there exist constants Cl(z ) and C2(z) 

independent of k such that 

(11) max uk(x,z) < Cl(z) 
x c R  1 

Israel J. Math., 

f_[uo (7) (x) dx = ~o- 

Then 
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and 

(12) 

THE FILTRATION EQUATION 

)3 ( )  U k X , T  ; ' + 2 d x  < C z ~- 2 �9 
- oo 

79 

Let S t = {(x, t): x e R 1, z ~ t < T} We shall need the following lemma. 

LEMMA 2. For any z e ( O , T / 2 )  and any k > O, there exists a sequence of  

smooth funct ions  U,,k,,(X, t) (n = 1,2, ...) having the fol lowing properties: 

a) U~,k,,(x,t ) is defined in the region St, . = {(x, t): ]x I <= n, z <_ t <_ T} and is a 

classical solution of  equation (1) in the same region; 

b) Ur,k,n(-}-n,t ) = CI(Z ) + 1 for  z < t <- T, 

(13) 0 < U~,k,,(X, t) < CI(z)  + 1, 

(14) f"_. [U~,k,.(X , z)]~+ 2dx < Ca(z) 

with a constant C3(z) depending only on z; 

c) at every point (x, t) e S .  lim.-.oo U~,k,.(X, t) = Uk(X, t). 

The proof of the lemma is similar to the proof of the theorem of the existence 

of the generalized solution in [7]. The plan of the proof follows. 

Let ~br,k(X ) = EUk(X , Z)] ~'+ 1 Then 

(15) I dp,.k(X + Ax) - (O~,k(X)l < M ( k , z ) A x  

where M ( k , z )  is a constant depending on k and z. 

From (11), (12) and (15), we conclude that there exists a sequence of infinitely 

differentiable functions ~b~.k,.(x) ( n =  1,2,.-.) with the following properties: 

~)~;,k,n(X) ~ ~r,k(X) as n ~ 0% and the convergence is uniform in every bounded 

interval of x ;0  < (a~,k,.+ I(X) < (b.,k,.(X) < [CI(z) + 1] 4+ ' ,  C~.k,.(X) = [CI(Z)+ 1] a+l 

for x > n - - 1 .  

< M (k, z) + 1, and i_q)~,k,n~.~j.i u.~ ~ C3(z ) 

with a constant Ca(r) depending on Cl(Z) and C2(z). 

Substituting u = v ~/(~+ 1) into (1), we get 

(16) ~3v _ (2 + 1)v ~/(~+1) 8zv 
Ot Ox 2 " 

Consider the first boundary problem for Eq. (16) in the rectangle St,. 

(17) v(x, t)Ir =~ = r "(x)' V( ___ n, t) = [Cx(z) + 1] ~+' 
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This problem has a solution V~,k,.(X, t) for  every n and 0 < infx~b~,k,.(x) < V~,k,.(X, t) 

_--< ]-Cl(z)+ 1] z+ i. Compare  the functions V~,k..(X, t) and V.,k,.+ I(X, t) in the region 

S~,.. Let  F . , .  be that  part  of  the boundary  of  S~,. consisting of  sides t = r, x = n ,  

x = -  n. Using (17), we find 

IF,~ >= v,,k,.+, IF,~ 
It can be verified that  the difference (V.,k, . -- V,,k, .+,) is a solution of  an equation 

for which the maximum principle holds. Hence V,,k,.(X, t ) >  V.,k,.+I(X, t) in S .... 

and we conclude that the sequence {V~,k,.(X, t)} (n = 1,2, ...) is a monotonical ly  

decreasing sequence of  positive functions. The same is true for the sequence 

U.,k,n = (Vt,k,n)1/(~+1) We deduce that  at every point  (x, t ) e  S .  

lim u ~,k..(X, t) = ~.,k(X, t), 
n--~ oo 

lim V,,k,.(X, t) = O~,k(X, t) = [~ ,k(X,  t)] ~+1 
~ .--~ oo 

Now it is necessary to show that  ~.,k(X, t) is a generalized solution of  (1). For  that 

purpose we must  check that  there exists a generalized derivative OO~,k/OX. It is 

easy to see that  the function OV~,k,n/t3X is a solution of  an equation for which the 

maximum principle holds. Hence, in S .... 

]r l (~l)r'k'n _~ max ~ . 
t~X r r , .  

We have for t = 0 

It follows f rom (17) that  

I t~O t,k,n 
I < M (k ,  ~) + 1. 
l OX = 

(~l)~'k'n I > O. 
Ox Jx=n = 

Next,  consider the function Z~,k,.(x , t) = v~,k,.(x, t) - (x - n + 1) [Cl(z  ) + 1] ~+1. 

This function satisfies the equation 

OZr,k,n 02Zz,k,n 
- (2 + 1)(v . ,k , . )  ~/(~+ 

1) 

t3t Ox 2 

Therefore,  the minimum of  Zr,k ,  n in the region {(x, t): n - 1 _< x < n, z _< t < T} 

can be only a t t = z , x = n - l o r x = n .  

We have Z~,k,.(X, Z) > O, Z~,k,.(n -- 1, t) > 0, and Z.,k , . (n,  t) = 0. Thus 
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6~Z't:'k'nt~x .x =n = ( 0 

and 

(18) 0 <_ 8vo"xk'" x= <= [C,(,) + 1] x+* 

The same reasoning applies to x = - n .  Hence 

~Vv'k'n [ max < m a x i M -  1),(Ct + 1)4+I]. 
S , , .  ~X = 

Therefore the function ~,,k(X, t) is a Lipshitz function with respect to x and there 

exists a generalized derivative (80,,k)/(SX). Using this, it is possible to prove that 

the function U,.k(X, t) is continuous and satisfies the corresponding integral identity. 

The equality ~,,k(X, t) = Uk(X, t) in S t follows from the uniqueness theorem proved 

in [ 7 ] .  

Now we prove the following lemma. 

LEMMA 3. Let ze(O,T/2)  and R , = { ( x , t ) : l x l  < l / % 2 z < t < T } "  There 

exist constants C4(z) and Cs(z ) independent of k such that for every k > 0 

(19) . ~---8-x-'] dxdt <= C,(*), 

( f {~Uk2+l~ 2 
(20) j j g . k ~  ! dxdt <= Cs(z). 

PROOF. Let U,,k,.(x,t) and V~,k,.(x,t) be the functions defined in Lemma 2. 

We have 

f l ffs 02V~'k'nV~'kndXdt" as .... u;~, ,n v~,k.,dxdt = ... Ox 2 , 

Hence 

(21)-~-~-~ffs ,~(U~,k,.) dxdt f f  8V~k. .1"  ['[" /8V~k.\Z = - - ~ ' "  v~ k . a t  - - - '  ..... 

From (13), (14), (18) and (21), we deduce the existence of a constant C4(x) 
such that 

(22) ( ( ?v . ,q2dxdt < c ,( , .  
J A . , A  ] = 

It follows from (22) that, for every k and n, we can find a point z* e [z, 2z] (possibly 

dependent on k and n) such that 
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(23) ~ Ox ] ,=~.= z 

Let S,. , .  = {(x, t): Ix [ =<., ~* _< t _< r}. We have 

f (  du,,,,, OV,,k, . dxdt (24) A. . , .  Ot Ot 

Using (17), we can write 

f f O21)r'k'n Ol)r,k, n 
s.*,. Ox2 ~t dxdt. 

Israel J. Math., 

l nl v  n,2. I 4 
From (13), (23), (24) and (25) we see that 

(26) ( (  {OV,,k,,~ 2dxdt < (2 + 1)[C, (v) + 1]~C4(z)/2z = C,(z). 
j j s . ,  ~, a t /  = 

Using Lemma 2 and (22) and (26), we get (19) and (20). Thus, Lemma 3 is proved. 

Now applying the Sobolev imbedding theorems (cf. [9]), we conclude that 

{u~+ 1} is a compact subset of L2(R,). Consequently, the set {Uk} also is a compact 

subset of  Lz(R~). 

Until now, we have treated z as an arbitrary constant. Let z ~ 0. By using the 

diagonal process, we extract the subsequence {Uk,} (k, ~ oo) that converges in 

L2 in every bounded region inside the strip (x e R ~, 0 < t < T). The limit function 

u*(x, t) is determined in the whole strip. 

We shall prove now that 

(27) u*(x, t) = Wro(X, t) 

where Eo is a constant defined by (7). 

Set Z,(x, t)= W~o(X, t + ~). Let B be a sufficiently large constant so that for 

k > l ,  ~ < 1 ,  

(28) Uk(X, t) = Z,(x, t) = 0 if Ix [ => B, 0 < t < T. 

(Such a constant exists because of(4) and (8)). Let D n be the region {] x] __< B + 1, 

0 < t < T} and let F(x, t) be an arbitrary infinitely differentiable function equal 

to zero near the boundary of region Dn. To prove (27), it suffices to show that for 

any ~ > 0, there exist values ko and a o such that 

(29) lffo(uk-Z,)F dxdt < e  f o r k >  k o, a < ~ 0 .  

Let f (x,  t) be a continuous function with compact support which has continuous 
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derivatives Of~St, 8f/Ox and (02f)/(OxZ). It follows from (6) that for every k and ~, 

(30) 

where 

fO Ck,,(x, t) = (2 + 1) [OUk(X, t) + (1 -- O)Z,(x, t)]adO. 

Let Ck,,,p(X, t) (p = 1,2,...) be a sequence of infinitely differentiable functions 

with the following properties: Ck,,,p(X, t)>--Ck.,(x, t), Ck,~,p(X, t ) >  0 in DB, and 

Ck,a,p(x, t) ~ Ck,,(x, t) uniformly in 08. 

From (30), we have 

�9 .,k.~,p~X2 ] dxdt  
(31) " 

= (u k - Z~)(Ck.~,p - t~k,~)ffXX2 dxdt  + _ Z~(x,O) - Uk(X,O)]f(x,O)dx. 

The inequality (29) will be proved if we find a function f (x ,  t) for which (31) holds, 

and such that the absolute value of every integral in the right hand side of (31) 

is less than e/2, and 

(32) O f  + Ck,a,p Ozf -- F(X, t). 
c3t c3x2 

To find such a function, consider a first boundary problem in DB for Eq. (32) 

(33) f ( x ,  T) = O, f ( B  + 1, t) = f (  - B - 1, t) = O. 

The problem (32), (33) has a solution fk.~,p(x, t) for every k, ~ and p (cf. [8]). Set 

fk,~,p(X, t) = 0 for Ix [ __< B + 1, t >__ T. Applying the maximum principle to Eq.(32) 

we get 

If,, , .(x,t)l =< M, in D n 

where the constant M1 depends only on F(x, t). Next, multiplying the Eq. (32) by 

(SEfk,,,p)/(SX z) and integrating on the region Dn, we get estimates 

(34) Ck'et'P k ox2 ] dxdt  < M2, 
B 

1 f _ :  [dfk,~,,p(x,O)) z 
(35) 2 1 dxx dx < M2 
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where M 2 also depends only on F(x, t). 

Now because of (28), we can substitute in (31) the functionf=fk,, ,p. We obtain 

(36) f f oB(uk - Z')F(x't)dxdt 

= ff(Bgk--Z~)(Ck,at,p--Ckr 2 d x d t  + faB[Z~(x,O)--Uk(X,O)]fk~p(x,O)dx,, 

Next we prove that there are k o and ~o such that 

(37) ] fBB[Z~(x, O) -- Uk(X, O)]fk,~,p(x, O)dx 
F, < 

, = 2  

for k __> k o, a __< ao and arbitrary p. 

We have 

BB[Z,(x, O) -- Uk(X, O)]fk,~,p(X, O) dx 

f 
, B 

= [ Z , ( x .  o)  - u~(x. o) ]  [L.,.,(x. o)  - L . , . , ( o .  o ) ]  d x  
- B  

, , ,B 

+ j_~ [Z,(x, o) - u,(x, o)]A,,,.(o, o) dx 

because 

f_~[z.(~, o) = - Uk(X, 0)] [fk.,,p(X, 0) - fk,.,p(0, 0)] dx 

Z,(x, O) dx = Uk(X, O) dx = E o. -B 

Let 7 --< (1/2M2) (e/4Eo) 2. Then for I x [ < 7, 

d x  - -  -~- 

Now let k o be sufficiently large and ~o sufficiently small constants so that for 

Ix [ __> 7, k > ko and ~ < ~o, Uk(X, 0) = Z~(x, 0) = 0. Then using (38), we obtain 



Vol. 14, 1973 THE FILTRATION EQUATION 85 

dx 

7 

__  I 
[L L. ] < e/4Eo Z~(x, O)dx + (x, O) dx = e/4E o 2Eo = e/2 

for k > ko, e < eo and arbitrary p. This leads to (37). 

Next we fix some values of k > ko and e < c%. Using (34), we have 

a?A,~,p ] f fD! u k -  Z~)(Ck,~, v - Ck,~) ~ dxdt ] 

__< max] u~- Z, IM~[2(B + 1)T]~maxlC~,,,,-G,, I <e/2 

if p is large enough. Hence we get (29) and also (27). It follows from (27) that for 

every sequence where k -~ 

(39) Uk(X, t) --~ WEo(X, t) 

in L 2 in every bounded region inside the strip (x ~ R 1,0 < t < T).  

The assertion of the theorem follows from the lemma: 

LEMMA 4: Let k-+ ~ .  Then Uk(X , 1) ~ WEo(X, 1) uniformly with respect to 

x ~ R  1. 

PROOF. Let A be a constant so that Uk(X, 1) = WEo(X, 1) = 0 for Ix I >---- A, k > 1. 

To prove this lemma, it is sufficient to prove that if k --* 0% 

(40) Uk(X, 1) --* Weo(X, 1) 

uniformly with respect to x e [ -  A, A]. Suppose that T = 1. Then from (24) and 

(25), 

(41) f;. [av*'k'"~2dxI < C4(T) 

From (41), we conclude that 
2 

\ W /  dx ~ c~(~)/~. 
t = l  
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Hence, there is a subsequence ~+1 {Uk, (X, 1)) (k i ~ 0o) which converges uniformly 

with respect to x e [ -  A, A] (cf. [4]). The corresponding subsequence Uk,(X, 1) 

also converges uniformly to the function z~(x, 1). Now consider the integral 

identity for Uk,(X,t) in the half-plane (x E R 1, 1 _< t < oo). We get 

(42) f l  ~176 f_~(Uk, ~t+U~+l + f_Uk,(X, 1)f(x, 1)dx 0 ~ x  ) dxd t ~o = 

for any infinitely differentiable function f (x ,  t) with compact support. Using (39), 

we can pass to the limit in (42) and obtain 

f  fi[ fl WEo-~ + Weo -ff-~x2J dxdt + ~(x, 1)f(x, 1)dx = O. 

Since wEo(x, t) is a generalized solution of the Cauchy problem in the half-plane 

( x e R  ~, 1 < t < oo), we conclude that 

flw f to(X, 1)f(x,  1)dx = x, 1)f(x, 1)dx. 

Hence t2(x, 1) = WEo(X, 1) and (40) holds for every sequence of k. Thus Lemma 4 

is proved. 

From Lemma 4, we have 

] ku(kx, k ~ + 2) _ Weo(X, 1) 1 = J ku(kx, k ~ + 2) _ kweo(kx, k a+ 2) 1 ~ O. 

Setting k = t ~/(~+2), we obtain 

tl/(~+z) I u(xt 1/(a+2), t) - WEo(Xt '/(~+2) , t)] -- 0 if t ~ 0o. 

As this convergence is uniform with respect to x 6 R 1, the assertion of the theorem 

follows. 
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